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Abstract 
Great advances have been achieved over the last two decades in the design process, yet in many industries, 
this process is still executed by deploying traditional methods.  A new method that is flexible enough to 
accommodate potentially contradictory design requirements such as cost, performance, aesthetics, safety, 
life cycle, and environmental impacts is being sought by industry leaders seeking an advantage over 
technically less adept competitors.    

 

Simulation, modeling, safety and costing tools have improved dramatically in the past decade.  What is 
missing is a workable synergy between these tools. Used separately, these individual tools require several 
manual iterations to attain the optimum design.  An intelligent modeling process for integrating the 
Probabilistic Design System (PDS) of ANSYS and the Behavioral Modeling feature of Pro/Engineer to 
automatically create optimum robust designs will be presented.  An example from the automotive industry 
will be used to demonstrate this new integration of these tools.  In this example, the parametric Reliability 
Based Optimization (RBO) becomes a feature of the solid model.  As changes are made in the solid model, 
the RBO is automatically run during model regeneration, and the design is verified.  This process 
empowers design engineers to conveniently generate 6-sigma quality designs early in the development 
process using sophisticated tools previously utilized by technically advanced engineers only.  

 

Introduction 
The need for innovative tools is urgent now since engineers face increasingly complex design requirements 
such as cost, performance, safety, quality, time to market, life cycle, environmental impact, aesthetics and 
changes in business models.  Robust Design is a methodology that addresses product quality issues early in 
the design cycle. The goal of Robust Design is to deliver customer expectations at affordable cost 
regardless of customer usage, degradation over product life and variation in manufacturing, suppliers, 
distribution, delivery and installation.  Since randomness and scatter is a part of reality, probabilistic design 
techniques are necessary to engineer quality into designs.  Traditional deterministic approaches compensate 
for uncertainties through the use of empirical safety factors which do not provide sufficient information to 
achieve optimal use of available resources.  The probabilistic design process has not been widely used 
because it has been intimidating and tedious due to its complexity.  Since 1999, ANSYS has introduced an 
integrated probabilistic system (ANSYS PDS) that makes the probabilistic analysis setup within ANSYS 
user-friendly.  In the latest ANSYS version, a probabilistic analysis wizard has been introduced that makes 
the process even simpler.   
In Robust Design, Control parameters are defined as those factors which the designer can control, such as 
geometric design variables, material selection, design configurations and manufacturing process settings.  
Noise parameters on the other hand are factors that are beyond the control of the designer, such as material 
property variability, imperfections resulting from the manufacturing process, temperature, humidity, 
component degradation with time, etc.  The probabilistic analysis setup within ANSYS is possible as long 



as one can define as ANSYS parameters all the Control design parameters.  Usually, when the component 
geometry is complex, the solid model is generated in a CAD system and either the geometry is transferred 
to ANSYS or the component is meshed within the CAD system and the finite element model is transferred 
to ANSYS.   This paper describes a technique to perform probabilistic analysis, reliability based 
optimization and robust optimization within the CAD environment using ANSYS PDS and Pro/Engineer 
Behavioral Modeling.  

Procedure 

Pro/Engineer and Behavioral Modeling 
Pro/Engineer is a powerful feature-based parametric solid modeler.  Typical features within the solid 
models can be protrusions, holes, rounds, etc.  Figure 1 shows the model tree and a typical list of features.  
Mechanica FEM-mode (formerly known as Pro-mesh) is an additional module of the Pro/Engineer family 
that enables the generation of finite element models within Pro/Engineer.  The Mechanica FEM-mode can 
generate simulation features such as mid-plane extraction of thin structures, mesh controls, loads, boundary 
conditions, end and perimeter welds, etc.  These simulation features are associated and stored with the 
appropriate part or assembly files.  The Behavioral Modeling Extension of Pro/Engineer is an additional 
module that has the capability of generating analysis and optimization study features.  Typical analysis 
features are measures of the model such as volume, moment of inertia, clearance, etc. An external analysis 
feature is also available.  Both analysis and optimization study features appear in the model tree and are 
being regenerated as the model changes.  The external analysis feature sends certain information to an 
external program, executes it, retrieves some predefined results from the output information and generates 
Pro/Engineer parameters.  The "optimization study features" perform an optimization to find the value of 
the design variables that optimize the objective function and assign these design variables to the model.  
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Figure 1 - Workflow for Reliability Based Optimization within Pro/Engineers using ANSYS 
PDS 

Probabilistic Design System 
ANSYS Probabilistic Design System (PDS) provides an automated process to answer the following 
questions as described in the probabilistic design guide (Chapter 3, ANSYS Advanced Analysis Guides): 

-If the input variables of a finite element model are subjected to scatter, how large is the scatter of 
 the output parameters?  

-How robust are the output parameters? (Here, output parameters can be any parameter that 
 ANSYS can calculate. Examples are temperature, stress, strain, or deflection at a node,  
 the maximum temperature,  etc.) 

-If the output is subjected to scatter due to the variation of the input variables, then what is the 
 probability that a design criterion given for the output parameters is no longer met?  

-How large is the probability that an unexpected and unwanted event takes place (what is the 
 failure probability)? 

-Which input variables contribute the most to the scatter of an output parameter and to the failure 
 probability?  



-What are the sensitivities of the output parameter with respect to the input variables? 

Probabilistic design can be used to determine the effect of one or more variables on the outcome of the 
analysis. In addition to the probabilistic design techniques available, ANSYS offers a set of strategic tools 
that can be used to enhance the efficiency of the probabilistic design process. For example, one can graph 
the effects of one input variable versus an output parameter. And one can easily add more samples and 
additional analysis loops to refine one's analysis. 

Automating Probabilistic Analysis for External Analysis 
Several ANSYS macros were written to automate the PDS process with a single executable command.  
Appendix A shows the listing of the PDS_CCD macro that runs a central composite design.  First, the 
macro requests to run the loop file, at least once, to get the parameter values.  The loop file runs the model 
generated by Pro/Engineer and defines the random input and output variables.  After the variable definition, 
the PDS_CCD macro runs a central composite design analysis and post processes the results.  The selected 
values of the output random variables are returned to Pro/Engineer.   

A toolkit application was built using the toolkit methods available by Pro/Engineer.  The application has 
been successfully tested for Pro/Engineer releases 2000i2 and 2001.  This application may be linked to an 
external analysis using behavioral modeling in order to create an external analysis feature that may be 
added to Pro/Engineer models.  Upon addition to the model, the user may specify the macro file that will be 
used as input to ANSYS.  It is this macro file, or some other that may be called from it, that is responsible 
for requesting Pro/Engineer to enter the Pro/mesh module, to generate the mesh, apply all loads and 
boundary conditions and generate the finite element of the model.  Using the finite element model file, the 
macro sets up and executes an ANSYS PDS analysis and creates a file (AnsysResults.out) that contains a 
set of variables, and their values.  This set of probabilistic variables is then passed to Pro/Engineer, which 
generates a set of model parameters.  Consequently one may generate an optimization feature that uses the 
probabilistic variables as constraints or objective functions to perform an optimization analysis of any 
Pro/Engineer design Variable. 

 
The analysis feature, when regenerated, requests finite element mesh data from Pro/Engineer, passes that 
data to ANSYS, executes the steps defined by the previously identified macro and then passes the results in 
AnsysResults.out along to Pro/Engineer.  Since a PDS analysis may be time consuming, it is important for 
the user to note that the External Analysis feature may be suppressed and unsuppressed, just like other 
feature.  Suppressing the feature would reduce the regeneration time when analysis may not be desired.  
Figure 1 shows the workflow used for reliability-based optimization within Pro/Engineer using ANSYS 
PDS. 

Formulations for Deterministic, Reliability and Robust Optimization 
The ever-increasing use of optimization tools in engineering designs can generate designs that are on the 
design constraint limits leaving very little room for tolerances in modeling uncertainties and manufacturing 
imperfections.  Optimum designs developed without consideration of uncertainty could possibly lead to 
unreliable designs.  In addition to the active constraint problems, optimum designs may be sensitive to 
design parameters such that small changes in the design variables may lead to a significant loss of 
performance.  A possible formulation of deterministic optimization from automotive crashworthiness (with 
fictitious numbers) can be: 

 

 

 Minimize  Weight 

Subject to:  B-Pillar Velocity  ≤  10 mm/s 

  Abdomen Load  ≤  1.0 KN 

  Rib Displacement  ≤ 30 mm 



  Symphysis Load ≤ 5.0 KN 

Thickness Design Variables: 

   ti
min  ≤ ti ≤ ti

max 

  

The Reliability Based Design Optimization (RBDO) methodologies not only provide improved designs but 
also a confidence range of the simulation based optimum designs.  

Reliability Index Approach 
For a reliability based design, a performance function can be defined as  G = R -S   where R and S are 
statistically independent and normally distributed random variables of the resistance and load 
measurements of the structure.  Typically, R can be the yield stress and S the maximum Von Mises stress.  
The G function is also called limit state function or failure function.  The curve G = 0 divides the design 
space into two regions, the safe region when G > 0 and unsafe region when G < 0.  Since we consider R 
and S to have variation, G will also exhibit variation.  The ratio β of the mean value of the G function (µG) 

and the standard deviation of the G function (σG) is defined as safety index or reliability index.  If Φ is the 
cumulative distribution function and G has a normal distribution then: 

β = -Φ(1-Reliability) =  µG / σG 

A possible formulation can be: 

Maximize  β 

Subject to:  Weight < Target-Weight 

   DVi
min< DVi < DVi

max 

 

Another formulation using the reliability index can be: 

Minimize  Weight 

Subject to:  β >  Target β 

   DVi
min< DVi < DVi

max 

A typical target value β is 3, which corresponds to probability failure of 0.00135.  However, it has been 
observed that Reliability Index Approach exhibits very slow convergence or even divergence for some 
problems. 

Reliability Optimization Approach  
Significant research effort has been devoted to making reliability based structural design optimization 
practical [Ref 1,2,3].   Reliability based optimization requires two major steps.  First, we need to identify 
the random variables and qualify the causes of variation.  Typically the distribution type and the necessary 
values that describe the distribution function of the random variables (i.e. mean and standard deviation for a 
normal distribution) need to be found. Second we need to select the desired reliability level (i.e 90%) and 
reformulate the deterministic constraints as probabilistic constraints.  For example a 90% reliability goal 
may be expressed as: the probability of failure Pf of the Abdomen Force to be greater than 1 KN must be 
less than 10%.   

A possible formulation of reliability-based optimization with a reliability goal of 95% from automotive 
crashworthiness (with fictitious numbers) can be: 

 

 



 

 Minimize  Weight 

Subject to:  P failure [ B-Pillar Velocity  >  10 mm/s] ≤ 5%  

  P failure [ Abdomen Load  > 1.0 KN  ] ≤  5% 

  P failure [ Rib Displacement  > 30 mm   ] ≤ 5% 

  P failure [ Symphysis Load > 5.0 KN  ] ≤ 5% 

Design Variables mean values of design parameters: 

   µti
min  ≤ µti ≤ µti

max 

 Random Variables with Given Variation: 

  Thickness 

  Yield Stress 

  Barrier Height 

  Impact Position 

The reliability based optimization approach accounts for variation and generates designs that meet a given 
level of reliability and usually move optimum solutions away from the constraints.  

Robust Optimization Approach 
The robust design optimization approach not only shifts performance mean to the target value but also 
reduces the product’s performance variability, achieving Six-sigma level robustness on the key product 
performance characteristics with respect to the quantified variation.  A possible formulation of a 3-sigma 
level robust design optimization approach from automotive crashworthiness (with fictitious numbers) can 
be: 

 

 Minimize  Weight 

Subject to:  µ[ B-Pillar Velocity ] + 3 σ[ B-Pillar Velocity ] ≤  10 mm/s   

  µ [ Abdomen Load ] + 3 σ [ Abdomen Load ]  ≤ 1.0 KN   

  µ [ Rib Displacement   ] + 3 σ [ Rib Displacement  ]  ≤ 30 mm    

  µ [ Symphysis Load] + 3 σ [Symphysis Load] ≤ 5.0 KN   

 

Design Variables mean values or standard deviation of design parameters: 

   µti
min  ≤ µti ≤ µti

max 

   σti
min  ≤ σti ≤ σti

max 

 

 Random Variables with Given Variation: 

  Thickness 

  Yield Stress 

  Barrier Height 

  Impact Position 



Reliability Optimization Example 
The current product development process is still CAD-centric and highly iterative. The success of this 
process requires skilled practitioners.   The growth in capabilities and user interface of CAD systems with 
parametric features allows the rapid generation of design alternatives.  Although with ANSYS connection 
products the evaluation of candidate designs has been simplified, the ideal environment would be to embed 
the prediction  of  product attributes within the CAD environment.  This will allow a rigorous evaluation 
and comparison of design alternatives.  Additionally, this process will capture the knowledge of  the skilled 
practitioner into the CAD design allowing the reuse of product designs and systematic decision making.   

With this vision in mind, the team of authors linked the Behavioral Modeling external analysis feature of 
Pro/Engineer with ANSYS PDS via the Pro/Engineer toolkit application described earlier. 

An example that demonstrates the process is presented.  Although the example geometry is simple, the 
methodology is applicable to any geometry that one can build and mesh within Pro/Engineer.  The power 
of this process lies in the fact that one can perform reliability-based optimization on virtually any 
Pro/Engineer design variable.  Figure 2a shows the simple box beam used in the example.  The following 
formulation of reliability-based optimization with reliability goal of 95% was used: 

 

 

 Minimize  Weight 

Subject to:  P failure [ ω1LCL ≤  ω1 ≤  ω1UCL ] ≤ 5%  

  P failure [ ω2LCL ≤  ω2 ≤  ω2UCL ] ≤ 5%  

 

Design Variables  

 

   Wmin  ≤ W ≤ Wmax 

   Hmin  ≤ H ≤ Hmax 

 

 Random Variables with Given Variation: 

  Thickness   with standard deviation 3.0% 

  Modules of Elasticity with standard deviation 1.0% 

  Density   with standard deviation 0.6% 

   

  

Where  

ω1LCL - ω1UCL  is an interval, which the first natural frequency ω1 should avoid 

ω2LCL - ω2UCL  is an interval, which the second natural frequency ω2 should avoid 

Wmin ,Wmax is the minimum and maximum values of the section width W 

Hmin ,Hmax is the minimum and maximum values of the section height H 



(a) 

 

(b) 

 
 

(c) 

 
(d) 

 

Figure 2 - Simulation Model, Mesh, Model tree and Optimization feature for Reliability 
Optimization 

 

Figure 2 also shows the Pro/Engineer solid model with the boundary condition simulation feature.  Figure 
2b shows the finite element mesh generated within Pro/Engineer.  This process can be used in assemblies in 
which end- and perimeter-welds can be used to constrain assembly components.   Figure 2c shows the 



model tree.  The first four features correspond to the basic datum planes and the global coordinate system.  
The fifth feature corresponds to the protrusion used to build the beam.  Next is an analysis feature that 
computes the weight.  The next feature in the model tree is called ANSYS PDS and is the external analysis 
feature that calls the ANSYS PDS macro and returns with the probability of failure described earlier.  The 
last feature corresponds to the optimization feature, which finds the width and height that minimize the 
weight and satisfies the reliability constraints.  Figure 2d shows the dialog box of the optimization feature 
setup with the goal of minimizing the weight, design constraints (probability of a natural frequency to be in 
the interval < 5%) and design variables and their limits (W, H).  The optimization feature can be easily 
substituted by a feasibility study (evaluate the existence of a solution) or by a sensitivity study that can 
determine (and plot) the effect of any Pro/Engineer design variable on the natural frequency or on the 
probability of failure. 

Robust Optimization Example 

Probabilistic Modeling Of Manufacturing Variations  
 In this example, probabilistic modeling of manufacturing variations for a subassembly of the auto body 
assembly shown in Figure 3 is performed to determine the sensitivity and the response distribution (stress, 
stiffness, fatigue life) due to the scatter of the random variables.  The scatter of the modulus of elasticity 
and the thickness and loading are defined in terms of probability distribution functions.   Monte Carlo and 
response surface sampling techniques are implemented in determining the response distribution. Six sigma 
design criteria are established to size the component and compare this design to the one developed using 
the traditional nominal value criteria. For this example, the battery, the battery tray and the interface 
elements were selected.  The tray is made from a composite material SMC and is supporting the battery as 
shown in Figure 4.   

 
Figure 3 - Assembly Finite Element Model 



 

Figure 4 - FE Model of the Battery and Tray Assembly 
 

The battery is modeled with an elastic isotropic material of uniform density appropriately adjusted to 
produce the battery weight.  The tray with a set of springs at appropriate locations supports the battery. The 
parametric model contains 2105 shell, 324 solid and 48 spring elements.  It is assumed that the tray is 
rigidly fixed at the support locations.  The input parameters of the FEA model can be any dimension, 
material property and loading.  For this study, three parameters were considered: the wall thickness (t), the 
modulus of elasticity (E) and the vertical loading (q).  We call these model parameters, and for any set of 
values of the three model parameters a solution of the FEA model can produce two model output variables: 
the maximum Von Mises stress (max σe) and the maximum equivalent strain (max εe).   

Uncertainty in the input parameters of the FEA model can be introduced by assuming certain randomness 
in the input parameters.  In this study, it was assumed that the thickness (t) and the modulus of elasticity (E) 
are characterized by a Gaussian distribution and that the vertical loading (q) is characterized by a lognormal 
distribution. These assumptions are based on historical data. The distribution parameters (mean values and 
standard deviations) can be specified to define a set of random values for the model parameters.  The mean 
value of the thickness was considered as a controllable parameter and it was declared as an optimization 
design variable.  The rest of the distribution parameters (mean values of E & q) and the standard deviation 
of t, E and q were considered uncontrollable or noise parameters.   Figures 5, 6 and 7 show the probability 
distributions and the probability of the input variables, namely, thickness, modulus of elasticity and vertical 
loading.  The ANSYS [Ref 5] Probabilistic Design System was used to generate the values from the 
distribution parameters.  A set of 100 points from these distributions was used to perform FEA analysis on 
the tray.  It was assumed that the thickness exhibits a Gaussian distribution with a mean value of 3.0 mm 
and a standard deviation of 0.3 mm.  In the optimization model, the mean value of the thickness was an 
unknown design variable.  It was also assumed that the modulus of elasticity exhibits a Gaussian 
distribution with a mean value of 5723 N/mm2 and a standard deviation of 570 N/mm2.   The lognormal 
distribution with a mean of 58842 m/sec2 and standard deviation of 12000 m/sec2 was considered for the 
vertical loading.   

Figures 8 and 9 show the histograms of the max equivalent strain and stress respectively. The mean 
(average) value of the max Von Mises stress is 40.95 N/mm2 and the standard deviation is 24.60 N/mm2.  
The mean (average) value of the max strain is 1.6345224e-002 and the standard deviation is       
5.8322964e-003. 
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Figure 5 - Probability Distribution of Thickness t (input variable) 
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Figure 6 - Probability Distribution of Modulus of Elasticity E (input variable) 
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Figure 7 - Probability Distribution of Vertical Loading q (input variable) 
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Figure 8 - Histogram Of Max Strain Using The Box-Behneken Matrix Design 
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Figure 9 - Histogram Of Max Stress Using The Box-Behneken Matrix Design 



Designing for Six Sigma quality with PDS and Optimization 
Factors like geometric dimensions (mean value of thickness) of a part can be controlled by designers in 
typical automotive designs. Uncontrollable or noise factors such as manufacturing imperfections  (standard 
deviation of the thickness), environmental variables (loading), or product deterioration (material properties) 
are sources of variations whose effects cannot be eliminated.  The goal of a robust design is to reduce a 
product's variation by reducing the sensitivity of the product to the sources of variation rather than by 
controlling these sources.  An effort was made to reduce response variation by selecting appropriate 
settings for controllable parameters to dampen the effects of hard-to-control noise variables.  The 
methodology for implementing robust design used in this research effort is summarized in a workflow 
diagram shown in Figure 10. 

The objective is to automatically select the mean value of the geometric design variables that produce a 
design that meets a target value while minimizing variability.  To automate this, we can set up an 
optimization loop that uses as design variables the mean values of thickness.  For a given set of mean 
values (using the probabilistic model) this approach can produce the mean and standard deviation of the 
response, in this case the mean max Von Mises stress and its standard deviation.  The next step is to 
compute the value of the constraint:  

σcon = µ(max σe) + 6 * σ(max σe),  

compare it to a target value and select the mean values of the design variables that minimize the standard 
deviation subject to σcon < σTarget 

The formulation of this example problem can be expressed in mathematical terms as: 

 

Select the mean values of the model design variables within a given range: 

 

t min < µ ti < t max 

that minimize the standard deviation of the response 

Minimize [σ(max σe)] 

subject to the constraint: 

[µ (max σe) + 6 * σ (max σe)] < σTarget 
 

For this example and number of design variables, the Box-Behneken Matrix design technique was used 
since it produces the same quality of results as the other techniques, but with the minimum number of FEA 
runs.  This technique may not be valid if a large number of design variables forms a highly non-linear 
problem.  In that case, the Latin Hypercube or the direct Monte Carlo should be used to validate the 
"goodness" of the Box-Behneken Matrix technique.  With the probabilistic design and optimization 
approach, engineers are able to identify better designs that meet the performance objectives while being 
less sensitive to manufacturing variations. 
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Figure 10 -  Workflow Diagram for Robust Design 



Conclusions 
Probabilistic Modeling of Manufacturing Variations coupled with optimization can avoid over-design 
(deterministic analysis) and in our example, also demonstrated a reduction in component weight by 17%. 
By incorporating the physical scatter into the model, the risk of failing legal or consumer tests can be 
minimized. 

The robust design optimization approach is more flexible, shifts performance mean to the target value and 
reduces the performance variability of a product, offering the potential for achieving Six Sigma level 
robustness on the key product performance characteristics with respect to the quantified variation.  The 
robust optimization method should be used with caution since a fundamental assumption for using it is that 
the response random variables exhibit normal distribution. 

A technique to perform probabilistic analysis, reliability based optimization and robust optimization within 
the CAD environment using ANSYS PDS and Pro/Engineer - Behavioral Modeling has been successfully 
demonstrated. 
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Appendix A  Listing of the PDS_CCD.MAC ANSYS Marco  
! run a central composite design 

PDMETH,RSM,CCD 

PDEXE,CCD_RUN,SER 

! save the current status and results 

PDSAVE,CCD_RUN,pds 



! 

! ++++++++++++++++++++++++++++++ 

! PDS response surfaces 

! ++++++++++++++++++++++++++++++ 

! retrieve the number random output parameters 

*get,NumRp,PDS,,NTRP 

! 

! loop over the random output parameters 

*DO,iVarIdx,1,NumRp 

  ! 

  ! get the names of the random output parmeter 

  *get,_ZC1,PDS,,RNAM,iVarIdx,STAR,1 

  *get,_ZC2,PDS,,RNAM,iVarIdx,STAR,9 

  *get,_ZC3,PDS,,RNAM,iVarIdx,STAR,17 

  *get,_ZC4,PDS,,RNAM,iVarIdx,STAR,25 

  ! 

  ! fit the response surface 

  
RSFIT,CCD_FIT,CCD_RUN,%_ZC1%%_ZC2%%_ZC3%%_ZC4%,QUAD,BOX,0.001,F
SR,0.9 

*ENDDO 

! save the current status and results 

PDSAVE,CCD_RUN,pds 

! ++++++++++++++++++++++++++++++ 

! PDS post-processing 

! ++++++++++++++++++++++++++++++ 

pds_post,'CCD_RUN',2,20000 

! clean-up unneeded parameters 

iMode= 

iVarIdx= 

NumRp= 
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